Algebraic quantum hypergroups of discrete type
نویسندگان
چکیده
منابع مشابه
Algebraic Quantum Hypergroups
An algebraic quantum group is a regular multiplier Hopf algebra with integrals. In this paper we will develop a theory of algebraic quantum hypergroups. It is very similar to the theory of algebraic quantum groups, except that the comultiplication is no longer assumed to be a homomorphism. We still require the existence of a left and of a right integral. There is also an antipode but it is char...
متن کاملAlgebraic Quantum Hypergroups
An algebraic quantum group is a multiplier Hopf algebra with integrals. In this paper we will develop a theory of algebraic quantum hypergroups. It is very similar to the theory of algebraic quantum groups, except that the comultiplication is no longer assumed to be a homomorphism. We still require the existence of a left and of a right integral. There is also an antipode but it is characterize...
متن کاملDiscrete Hypergroups Associated with Compact Quantum Gelfand Pairs
A discrete DJS-hypergroup is constructed in connection with the linearization formula for the product of two spherical elements for a quantum Gelfand pair of two compact quantum groups. A similar construction is discussed for the case of a generalized quantum Gelfand pair, where the role of the quantum subgroup is taken over by a two-sided coideal in the dual Hopf algebra. The paper starts with...
متن کاملDiscrete commutative hypergroups
The concept of a locally compact hypergroup was introduced by Dunkl [6], Jewett [14] and Spector [26]. Hypergroups generalize convolution algebras of measures associated to groups as well as linearization formulae of classical families of special functions, e.g. orthogonal polynomials. Many results of harmonic analysis on locally compact abelian groups can be carried over to the case of commuta...
متن کاملOn the Algebraic Structure of Transposition Hypergroups with Idempotent Identity
This paper studies the algebraic structure of transposition hypergroups with idempotent identity. Their subhypergroups and their properties are examined. Right, left and double cosets are defined through symmetric subhypergroups and their properties are studied. Further- more, this paper examines the homomorphisms, the behaviour of attrac- tive and non-attractive elements through them, as well ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 2011
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-15167